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S U M M A R Y  
A transformation, which maps the exterior or the interior of a simple closed curve with corners into the exterior or 
interior respectively of a simple smooth (corner-flee) closed curve, is introduced. Symmetry properties are shown to be 
preserved by the transformation and a numerical procedure for applying the proposed transformation to an arbitrary 
curve is presented. 

Smooth curves, resulting from the application of the corner-eliminating transformation to a square and to a six- 
cornered double ship section are also given. 

1. Introduction 

A polygon with n corners can be mapped into a straight line by means of the Schwarz-Christoffel 
transformation. The ogive, with two corners, can be mapped into a circle by means of a known 
transformation. In both cases corners are eliminated by introducing transformations with 
branch points of proper order at the corner points. For  simple, closed curves with more than 
two corners, however, a corner-eliminating transformation is not available. 

Several problems in ship hydrodynamics require the mapping of a transverse double ship 
section into a circle. But double ship sections commonly have six corner points: two each at 
the top and bottom, and two at the non-normal intersection of the hull with the free surface. 
Thus it is desirable to derive a preliminary transformation which maps the ship section into 
a smooth (corner-free), simple closed curve. 

A transformation which accomplishes this objective will be presented. It will be shown that 
if the original curve has double symmetry (as does a double ship section), then the smooth 
curve is also doubly symmetric. The results of transforming a square and a ship section in this 
manner will be shown. 

2. The Transformations 

Consider a simple, closed curve G with corners of exterior angles 7j, j =  1, 2 . . . .  , n, at the 
noncoincident points represented by the complex numbers a~ in the complex z-plane. Let the 
origin lie in the interior of G. We shall show that the curve G is mapped one-to-one into a simple, 
smooth, closed curve F in the ~-plane (~ = ~ +it/) by the transformation 

f z / = c + a j p j  In z + F ( z ) d z  
j= 1 zo 

F ( z ) =  - , p j -  1 
j= 1 ~j 

(1) 

and that ~ (z) is regular in the exterior of G, which is mapped one-to-one into the exterior of F. 
Here z o is an arbitrary reference point on or exterior to G, and c an arbitrary constant. 

It is clear that ~ (z) has algebraic branch points at z = aj of order n/c~, j = 1, 2, . . . ,  n, since, 
in a small neighborhood of a j, the integrand of (1) may be written asymptotically in the form 
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The transformation is regular at the point z = ~ which maps into the point at infinity in the 
(-plane. This is seen by writing (1) in the asymptotic form 

( ~_ a j p j l n z  + F(z )dz  + 1 - -  ajpj d z ~ - z + c  
j = l  zo za Z j = l  

where c is a constant and zl is a fixed point such that [zl] >>aj, j =  1, 2, ..., n, and Iz] > Izl]. 
Since there are no other branch points, and no singularities in the exterior of G, it is clear that, 
if the curve G, considered as a cut, is not crossed, the mapping between the exteriors of G and F 
is one-to-one. This then implies that the closed curve G maps one-to-one into F. Furthermore, 
the order of a branch point, n/~j, indicates that an exterior angle ~j at aj of G becomes an angle 
of n at the corresponding point of F; i.e., the corner is eliminated. Thus the transformation (1) 
has the desired properties for an exterior mapping. 

Similarly, it can be shown that the interior of G is mapped one-to-one into the interior of a 
simple, smooth, closed curve F', by the transformation 

1 z q~ n = - - -  d z ,  qj = - - -  1 (2) 
0 j = 1 a j  ]~j 

where flj = 2n - ~.i is the interior angle of G at ai. This transformation is regular in the interior 
of G and maps G one-to-one into F'. The origin in the z-plane corresponds to the origin in the 
(-plane. 

It is instructive to compare the transformations (1) or (2) with that of Schwarz-Christoffel 
polygons. The latter is of the form 

z = r j  = l (3 )  

j = l  

z(aj) = ((2j), j = 1, 2 . . . . .  n.  (3a) 

Here (3) is essentially a differential equation for ((z), in which the n unknown constants 2j 
are to be determined from the auxiliary conditions (3a). The solution of these equations for 
arbitrary polygons is a difficult problem. In contrast, the transformations (1) and (2) are direct 
and require only simple numerical quadrature; the result is, of course less rewarding. The 
smooth curves yielded by transformations (1) or (2) would only serve as a preliminary step in 
mapping the original curve into a circle. 

3. Symmetry Properties 

First let us consider the case that G is symmetrical about the x-axis. The integrand of (1) is 
then seen to involve polynomials in 1/z with real coefficients, since the a /a re  either real or 
occur in pairs of complex conjugates, and for such a pair we have 

( 1 - ~ ) ( 1 - ~ ) =  (1 a ~ j + ~ ) .  (4) 

When z is real the above product becomes ]1 -c~/xl 2, which is real and positive, as is also the 
factor ( 1 -  a / x )  with a~ real, since x is exterior to G. For the p ; th  power of these positive 
quantities we may select that branch which is also real. Thus we see from (1) that ~(z) is real 
when z is real; i.e., the real axis in the z-plane is mapped into the real axis in the ~-plane. Hence, 
by the Schwarz reflection principle, conjugate points in the z-plane map into conjugate points 
in the (-plane. Consequently the curve F must also be symmetrical about the x-axis. 

Next let us suppose that G is symmetrical about both the x- and y-axes, as is the case for 
double ship sections. The integrand of (1) is now seen to involve polynomials in 1/z a with real 
coefficients since, if aj is real, we have 

( 1 - ~ )  Q + a - J ) = ( 1  - a~) 
Z Z 2 / ' 
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If a~ is imaginary, (4) becomes (1 -[ajl2/z2), and if aj is complex, then there are also corners at 
- a j  and _ 8j, which yield 

- -  - -  2 - - 2  2 - - 2  

aj + aj aj aj (5) . , 1 + z : = i  + 
These polynomials in 1/z 2 are real and positive when z is real, and hence selection of that 
branch of the pTpower of these polynomials which is real when z is real demonstrates that the 
integrand of (1) is also real. This also demonstrates that F(z) is an even function. 

Since both aj and - aj occur, then Z~= t aipj = 0. Hence another consequence of the double 
symmetry of G is that the second term of (1) vanishes. The transformation (1) then becomes 

; = c J ~o F(z)dz (6) 

which satisfies the condition ~ (z0)= c. Let us choose c so that ~( -Zo)= - c .  Applying this last 
condition in (6) yields 

c = F(z)dz (7) 
d - -  Z 0  

and substituting this value into (6) gives fz 
= �89 F(z)dz + F(z)dz (8) 

-- Z 0 ZO 

Since F(z) is an even function, we have 

f z } f z ; = 1 - � 8 9  - � 8 9  + + F(z) dz=�89 F(z) dz (9) 
zo -z zo z 0 -z -z 

a result which shows that the apparent dependence of ~ on Zo in (8) is illusory. Since F (z) is 
real when z is real, then ~ (z) is also real; i.e., the real axis in the z-plane is mapped into the 
real axis in the ~-plane. The Schwarz reflection principle then indicates that symmetry about 
the real axis is preserved by the transformation (8). This, together with the result in (9) that 

(z) is an odd function, completes the proof that symmetry about both the real and imaginary 
axes is preserved. 

Similarly one may show that the transformation (2) for the interior mapping also preserves 
double symmetry. 

4. Numerical Evaluation 

We wish to determine the smooth curve F corresponding to a given doubly-symmetric curve 
G. We shall suppose that G is given in parametric form by 

z(a) = x(a)+iy(a)  (10) 

with z (o-j)= aj. Let z = a and z = i b denote the intersections of G with the positive x- and y-axes 
respectively, and a =  0 correspond to z = a. 

In order to determine the constant c in (6), we take z o = a in (6) and then observe from (7), (8), 
and (9) that if(a) = c. Hence c is real, since ~ is real when z is real. When z = ib we obtain from (6) 

2 r (i b) = c + F (z) dz 

Since ~ (i b) is also imaginary, this yields 

j ' i b  

c = - R e  F(z)dz (11) 
a 

where Re denotes the real part. 
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Thus c can be obtained from the line integral over G in the first quadrant. Let us write (6) 
in the form 

( z(~) dz 
( (0 )  = c + V(z )  ~ da (12) 

a a  

and subdivide each interval aj < o-< o-j+ 1 into small, uniform subintervals Aaj. This defines 
a discrete set of values of z(a) on G and a corresponding discrete set of values of ~(cr) on F. 
Since F(z)  is composed of several factors, each of which is multi-valued, it is necessary to select 
the proper branch of each of these factors and to remain on the selected branches as a is varied. 
Two cases may occur: the point z = a is not a branch point, or the point z = a is a branch point 
and a = az. For the former case, the initial argument 0 of each one of the factors of F (z) at z = a 
may be selected in the interval - r e + 0  o <__ 0 <  rC+0o, where 0o is an arbitrary constant. A 
convenient choice is 0o=0.  For the latter case, the initial argument of the factor ( 1 - a l / z )  
at the point z = a is c~/2 and the arguments of the other factors are again selected in the interval 
-zc_< 0 <  ~. 

Once the proper branch for each factor has been selected, the argument of each factor varies 
continuously with increasing ~ until the next branch point is encountered. In crossing a branch 
point at z = a j, the argument of the factor ( 1 -  a J z ) j u m p s  by e j, but the other factors of F(z )  
remain continuous. One can now proceed in this manner through the successive branches of G. 

Another difficulty, encountered when the integral (2) is evaluated by a quadrature formula, 
is that the integrand becomes infinite when ej > 7c, as is the case unless the corner is a re-entrant 
one. These singularities can be removed by the procedure of subtracting from the integrand 
functions having the identical singularities, but which can be integrated in closed form, as 
will now be described. 

Let us consider the mapping of a particular branch of G lying between two branch points at 
z = ak and z = ak+ ~. Equation (6) may then be written as 

i f (-= (k + F ( z ) d z  ; (k = ( (ak) ,  (1 = C + F ( z ) d z .  (13) 
ak a 

Two singularities are encountered in F (z) at z = ak and z = ak + 1 when C~k and ek+ z are both 
larger than ~. These singularities may be eliminated when (13) is written as 

z 

= ~k + [F(z ) - -Gk(Z- -ak)P~- -Gk+l  (Z--ak+l)P~+~] dz 
(lk 

(14) 

O~k ~ +l r t z _ a ~/~+1 _ (a a _ ak +1 )~/'~ + 1 ] + - -  Gk(Z--aa) ~/~ + Gk+I t_~ k+lJ 
TC 7C 

where 

G,, = a2, pj 1 - ~ s  , m = k , k + l .  (15) 
j = l  
j=/- m 

Since the proper branch of each one of the factors (1 - ai/z  ) in F (z) has already been selected, 
the argument of (1 - aJak) is then also determined. In addition we have 

A r g ( z - a , ) = a r g  Q - ~ ) + A r g ( z ) .  (16) 

Since A r g ( 1 - - a k / z )  is known for each z on the segment (a k, a~+l), Arg(z--ak)  is uniquely 
determined by (16) if we select 

- rc < Arg (z) < ~.  (17) 

The integral in (14) may then be replaced by a quadrature formula and the computat ion is 
straightforward. The foregoing procedure will be illustrated in two numerical examples. 
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5. Example 1: Mapping of a square 

For the exterior mapping of the square shown in Fig. 1, we have ej=37r/2, p~= -�89 and 

F (z )=  (1 1 + i )  - ~ ( 1 +  l z i ) - ~  (1 + l z + i ) - ~ ( 1 - l z i ) - ~ .  (18) 

At the point A(1, 0), the initial arguments of the four factors of F(z) are (-re/2, - tg-~�89 
tg- ~ �89 ~/2). These arguments determine the branch of each one of the factors of F(z). 

A simplification may be introduced in the present case by substituting z= 1 +iy, 0< y<  1 
in (18) for points along the line AB. Then (18) becomes 

�9 (1 "k-y2)~ ei~ / 
F (z) = (1 - y2)+ (y4 + 6y2 + 25)+ 

0 ( y ) = ~ t g - l y - � 8 9  4y 
5 - y  2 

(19) 

The arguments of the four factors of F(z) in (18), as y ~  1 from below, are given by (-3zc/4, 
-re/4, 0, re/4). Hence the selected branch for F ( z ) i n  (19) requires 0(0)=0 and 0(1)=z/4. 

The singularity at a 1 = 1 + i can be eliminated by writing 

f(z)dz = a ( y ) - y 6 ( 1 )  dy + 6 ( 1 )  ' Y dy 
o (l-Y2) + o (1-y2)+ 

where 
i (1 -}- y2)~ e i~ 

G(y) = (y,+6y2+25)+ . 

Then 
G(1) = 2 -~ e 3~i/4 . 

The real and imaginary parts of r  c for 0 < y < 1 can now be computed for uniform increments 
of y by a quadrature formula. 

The mapping of the remainder of the square in the first quadrant, BC, can be derived im- 
mediately from that for AB, since the mapping is symmetric about the 45-degree radial in the 
C-plane. This can be shown by first verifying that the line x =y  in the z-plane maps into the 
line r = q in the C-plane, and then applying the Schwarz reflection principle. Because of this- 
symmetry, c can be obtained from (11) in the form 

c =  - 2 R e  iF(iy)dy. (20) 
. 0 

- I + i  C I+ i  
B 

A • 

- I - i  [ - i  

Figure 1. Notation for the square�9 
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Figure 2. Transformation of the square. 
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The resulting s m o o t h  curve F, obtained by using a 50-point S impson-rule  quadrature formula, 
is s h o w n  in Fig. 2. 

6. Example  2: Mapping o f  a ship section 

A double  ship sect ion with a flat b o t t o m  and a n o n n o r m a l  intersect ion with the free surface 
(Fig. 3) is defined by the po lar-coordinate  data given in Table 1, with z = r e i~ Corner points  
occur at a 1 = a and a 2 = d + i b in the first quadrant.  Let us consider the mapping  of  the first 
branch. F r o m  (14) we obtain 

~(~b)=c+ [F(rei~176176 p~] ~ + i ei~ 
o (21) 

+ ~ ~ ] 0== ~b_< ~b 2 
7c 7c 

where z = r(q~)e i4 and 

F(z)= 0 - a)m (1 - ~)P~ (1 + ~)~ (1 + a)Pl (1 + ~)P~ Q - ~ )  p~ (22) 

G2=(a2/2)-P~(1-  a ~  m aye(1 ~'a~P~(1 fi23 p~ 
a2,1 O q - - -  - - - -  q- - -  . (24) a2 / a2,] az / 

TABLE 1 

Polarrepresentation ~theshipsection 

r 4 r 4 r ~ r 
1 0.0000 0.3888 21 1.1223 0.3109 4'1 1.3875 0.5698 61 1.4711 0.8445 
2 0.0379 0.3697 22 1.1534 0.3217 42 1.3927 0.5835 62 1.4748 0.8583 
3 0.0798 0.3513 23 1.1806 0.3332 43 1.3976 0.5972 63 1.4786 0.8720 
4 0.1264 0.3334 24 1.2051 0.3449 44 1.4024 0.6109 64 1.4825 0.8858 
5 0.1778 0.3168 25 1.2261 0.3571 45 1.4071 0.6246 65 1.4869 0.8995 
6 0.2346 0.3012 26 1.2452 0.3696 46 1.4116 0.6383 66 1.4920 0.9132 
7 0.2963 0.2878 27 1.2622 0.3822 47 1.4160 0.6520 67 1.4977 0.9268 
8 0.3614 0.2773 28 1.2768 0.3951 48 1.4204 0.6658 68 1.5044 0.9404 
9 0.4294 0.2691 29 1.2901 0.4081 49 1.4246 0.6795 69 1.5122 0.9540 

10 0.4994 0.2632 30 1.3021 0.4213 50 1.4288 0.6932 70 1.5156 0.9594 
11 0.5700 0.2595 31 1.3132 0.4345 51 1.4329 0.7070 71 1.5193 0.9649 
12 0.6410 0.2576 32 1.3232 0.4478 52 1.4370 0.7207 72 1.5233 0.9703 
13 0.7098 0.2579 33 1.3324 0.4612 53 1.4410 0.7345 73 1.5277 0.9757 
14 0.7756 0.2600 34 1.3410 0.4747 54 1.4449 0.7482 74 1.5325 0.9811 
15 0.8392 0.2635 35 1.3491 0.4881 55 1.4488 0.7620 75 1.5382 0.9865 
16 0.8984 0.2685 36 1.3565 0.5018 56 1.4526 0.7757 76 1.5451 0.9919 
17 0.9537 0.2748 37 1.3635 0.5152 57 1.4564 0.7895 77 1.5536 0.9973 
18 1.0028 0.2824 38 1.3701 0.5288 58 1.4601 0.8032 78 1.5596 1.0000 
19 1.0475 0.2910 39 1.3762 0.5424 59 1.4638 0.8170 
20 1.0873 0.3006 40 1.3820 0.5561 60 1.4675 0.8308 

For the mapping of the 

= + 

flat part we write 

+ e ~ 

7"C 
+ c~2 G2(z-az)~/~2 2 > q5 > ~b 2 . (25) 

7"C 
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a2  

al  
=X 

Figure 3. Notation for a double ship section. 

0 0.1 0.2 0.3 0.4 0.5 0.6 

Figure 4. Comparison between the original 
(1) and transformed (2) ship section. 

0.7 0.8 
X ^ 

The initial arguments of the factors in each one of the six parentheses in (22), evaluated at 
z = a, are (:~t/2, -/3, - 7, 0, ~,/~) respectively, where/~ = tg -1 [b/(a-  d)] and 7 = tg -1 [b/(a + d)] 
(see Fig. 3 for notation). These arguments vary continuously until q5 = q52. When passing through 
the branch point at z = a2, the, argument of the term in the second parenthesis in (22) is in- 
cremented by 0~ 2 while the other arguments remain continuous when passing through this 
branch point. 

Following our convention, we have taken 0 < Arg (z) < z/2 in the first quadrant, and hence 

Arg ( z -  a2) = Arg (1 - az/z ) +Arg  (z) 

uniquely determines Arg ( z -  a2). Once the proper branch for each one of the terms and factors 
in (21) through t24) has been selected, the integrals (21) and (25) may be evaluated by a quadra- 
ture formula. 

The foregoing procedure was applied to the ship section defined by the data in Table 1 and 
shown in Fig. 4. The input data consist of 78 points (r, qS) in the interval q~=0 to ~b2=89.3 ~ 
which were interpolated using the Lagrange five-point interpolation formula to obtain 450 
points in the same interval. A Lagrange five-point interpolation formula was also used to 
compute the discrete values of dr~dO. The quadratures were performed by the Simpson rule 
using 450 points for q~=0 to q~2=89.3 ~ and 5 points from ~b2=89.3 ~ to 90 ~ The resulting 
smooth curve is also shown in Fig. 4. 

This work was sponsored by the Fluid Dynamics Branch of the U.S. Office of Naval Research under Contract N00014- 
68-A-0196-0004. 
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